Files
2024-02-02 02:44:24 +01:00

547 lines
20 KiB
C

/*
* This example shows how application can implement RX and TX DMA for UART.
* It uses simple packet example approach and 3 separate buffers:
*
* - Raw DMA RX buffer where DMA transfers data from UART to memory
* - Ringbuff for RX data which are transfered from raw buffer and ready for application processin
* - Ringbuff for TX data to be sent out by DMA TX
*/
/* Includes */
#include "main.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "lwrb.h"
/* Private function prototypes */
void SystemClock_Config(void);
/* USART related functions */
void usart_init(void);
void usart_rx_check(void);
void usart_process_data(const void* data, size_t len);
void usart_send_string(const char* str);
uint8_t usart_start_tx_dma_transfer(void);
/**
* \brief Calculate length of statically allocated array
*/
#define ARRAY_LEN(x) (sizeof(x) / sizeof((x)[0]))
/**
* \brief USART RX buffer for DMA to transfer every received byte RX
* \note Contains raw data that are about to be processed by different events
*
* Special use case for STM32H7 series.
* Default memory configuration in STM32H7 may put variables to DTCM RAM,
* part of memory that is super fast, however DMA has no access to it.
*
* For this specific example, all variables are by default
* configured in D1 RAM. This is configured in linker script
*/
uint8_t
usart_rx_dma_buffer[64];
/**
* \brief Ring buffer instance for TX data
*/
lwrb_t
usart_rx_rb;
/**
* \brief Ring buffer data array for RX DMA
*/
uint8_t
usart_rx_rb_data[128];
/**
* \brief Ring buffer instance for TX data
*/
lwrb_t
usart_tx_rb;
/**
* \brief Ring buffer data array for TX DMA
*/
uint8_t
usart_tx_rb_data[128];
/**
* \brief Length of currently active TX DMA transfer
*/
volatile size_t
usart_tx_dma_current_len;
/**
* \brief Application entry point
*/
int
main(void) {
uint8_t state, cmd, len;
/* MCU Configuration */
// SCB_DisableDCache();
// SCB_DisableICache();
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
LL_APB4_GRP1_EnableClock(LL_APB4_GRP1_PERIPH_SYSCFG);
/* Configure the system clock */
SystemClock_Config();
/* Initialize ringbuff for TX & RX */
lwrb_init(&usart_tx_rb, usart_tx_rb_data, sizeof(usart_tx_rb_data));
lwrb_init(&usart_rx_rb, usart_rx_rb_data, sizeof(usart_rx_rb_data));
/* Initialize all configured peripherals */
usart_init();
usart_send_string("USART DMA example: DMA HT & TC + USART IDLE LINE interrupts\r\n");
usart_send_string("Start sending data to STM32\r\n");
/* After this point, do not use usart_send_string function anymore */
/* Send packet data over UART from PC (or other STM32 device) */
/* Infinite loop */
state = 0;
while (1) {
uint8_t b;
/* Process RX ringbuffer */
/* Packet format: START_BYTE, CMD, LEN[, DATA[0], DATA[len - 1]], STOP BYTE */
/* DATA bytes are included only if LEN > 0 */
/* An example, send sequence of these bytes: 0x55, 0x01, 0x01, 0xFF, 0xAA */
/* Read byte by byte */
if (lwrb_read(&usart_rx_rb, &b, 1) == 1) {
lwrb_write(&usart_tx_rb, &b, 1); /* Write data to transmit buffer */
usart_start_tx_dma_transfer();
switch (state) {
case 0: { /* Wait for start byte */
if (b == 0x55) {
++state;
}
break;
}
case 1: { /* Check packet command */
cmd = b;
++state;
break;
}
case 2: { /* Packet data length */
len = b;
++state;
if (len == 0) {
++state; /* Ignore data part if len = 0 */
}
break;
}
case 3: { /* Data for command */
--len; /* Decrease for received character */
if (len == 0) {
++state;
}
break;
}
case 4: { /* End of packet */
if (b == 0xAA) {
/* Packet is valid */
/* Send out response with CMD = 0xFF */
b = 0x55; /* Start byte */
lwrb_write(&usart_tx_rb, &b, 1);
cmd = 0xFF; /* Command = 0xFF = OK response */
lwrb_write(&usart_tx_rb, &cmd, 1);
b = 0x00; /* Len = 0 */
lwrb_write(&usart_tx_rb, &b, 1);
b = 0xAA; /* Stop byte */
lwrb_write(&usart_tx_rb, &b, 1);
/* Flush everything */
usart_start_tx_dma_transfer();
}
state = 0;
break;
}
}
}
/* Do other tasks ... */
}
}
/**
* \brief Check for new data received with DMA
*
* User must select context to call this function from:
* - Only interrupts (DMA HT, DMA TC, UART IDLE) with same preemption priority level
* - Only thread context (outside interrupts)
*
* If called from both context-es, exclusive access protection must be implemented
* This mode is not advised as it usually means architecture design problems
*
* When IDLE interrupt is not present, application must rely only on thread context,
* by manually calling function as quickly as possible, to make sure
* data are read from raw buffer and processed.
*
* Not doing reads fast enough may cause DMA to overflow unread received bytes,
* hence application will lost useful data.
*
* Solutions to this are:
* - Improve architecture design to achieve faster reads
* - Increase raw buffer size and allow DMA to write more data before this function is called
*/
void
usart_rx_check(void) {
static size_t old_pos;
size_t pos;
/* Calculate current position in buffer and check for new data available */
pos = ARRAY_LEN(usart_rx_dma_buffer) - LL_DMA_GetDataLength(DMA1, LL_DMA_STREAM_0);
if (pos != old_pos) { /* Check change in received data */
if (pos > old_pos) { /* Current position is over previous one */
/*
* Processing is done in "linear" mode.
*
* Application processing is fast with single data block,
* length is simply calculated by subtracting pointers
*
* [ 0 ]
* [ 1 ] <- old_pos |------------------------------------|
* [ 2 ] | |
* [ 3 ] | Single block (len = pos - old_pos) |
* [ 4 ] | |
* [ 5 ] |------------------------------------|
* [ 6 ] <- pos
* [ 7 ]
* [ N - 1 ]
*/
usart_process_data(&usart_rx_dma_buffer[old_pos], pos - old_pos);
} else {
/*
* Processing is done in "overflow" mode..
*
* Application must process data twice,
* since there are 2 linear memory blocks to handle
*
* [ 0 ] |---------------------------------|
* [ 1 ] | Second block (len = pos) |
* [ 2 ] |---------------------------------|
* [ 3 ] <- pos
* [ 4 ] <- old_pos |---------------------------------|
* [ 5 ] | |
* [ 6 ] | First block (len = N - old_pos) |
* [ 7 ] | |
* [ N - 1 ] |---------------------------------|
*/
usart_process_data(&usart_rx_dma_buffer[old_pos], ARRAY_LEN(usart_rx_dma_buffer) - old_pos);
if (pos > 0) {
usart_process_data(&usart_rx_dma_buffer[0], pos);
}
}
old_pos = pos; /* Save current position as old for next transfers */
}
}
/**
* \brief Check if DMA is active and if not try to send data
*
* This function can be called either by application to start data transfer
* or from DMA TX interrupt after previous transfer just finished
*
* \return `1` if transfer just started, `0` if on-going or no data to transmit
*/
uint8_t
usart_start_tx_dma_transfer(void) {
uint32_t primask;
uint8_t started = 0;
/*
* First check if transfer is currently in-active,
* by examining the value of usart_tx_dma_current_len variable.
*
* This variable is set before DMA transfer is started and cleared in DMA TX complete interrupt.
*
* It is not necessary to disable the interrupts before checking the variable:
*
* When usart_tx_dma_current_len == 0
* - This function is called by either application or TX DMA interrupt
* - When called from interrupt, it was just reset before the call,
* indicating transfer just completed and ready for more
* - When called from an application, transfer was previously already in-active
* and immediate call from interrupt cannot happen at this moment
*
* When usart_tx_dma_current_len != 0
* - This function is called only by an application.
* - It will never be called from interrupt with usart_tx_dma_current_len != 0 condition
*
* Disabling interrupts before checking for next transfer is advised
* only if multiple operating system threads can access to this function w/o
* exclusive access protection (mutex) configured,
* or if application calls this function from multiple interrupts.
*
* This example assumes worst use case scenario,
* hence interrupts are disabled prior every check
*/
primask = __get_PRIMASK();
__disable_irq();
if (usart_tx_dma_current_len == 0
&& (usart_tx_dma_current_len = lwrb_get_linear_block_read_length(&usart_tx_rb)) > 0) {
/* Disable channel if enabled */
LL_DMA_DisableStream(DMA1, LL_DMA_STREAM_1);
/* Clear all flags */
LL_DMA_ClearFlag_TC1(DMA1);
LL_DMA_ClearFlag_HT1(DMA1);
LL_DMA_ClearFlag_TE1(DMA1);
LL_DMA_ClearFlag_DME1(DMA1);
LL_DMA_ClearFlag_FE1(DMA1);
/* Prepare DMA data and length */
LL_DMA_SetDataLength(DMA1, LL_DMA_STREAM_1, usart_tx_dma_current_len);
LL_DMA_SetMemoryAddress(DMA1, LL_DMA_STREAM_1, (uint32_t)lwrb_get_linear_block_read_address(&usart_tx_rb));
/* Start transfer */
LL_DMA_EnableStream(DMA1, LL_DMA_STREAM_1);
started = 1;
}
__set_PRIMASK(primask);
return started;
}
/**
* \brief Process received data over UART
* Data are written to RX ringbuffer for application processing at latter stage
* \param[in] data: Data to process
* \param[in] len: Length in units of bytes
*/
void
usart_process_data(const void* data, size_t len) {
lwrb_write(&usart_rx_rb, data, len); /* Write data to receive buffer */
}
/**
* \brief Send string over USART
* \param[in] str: String to send
*/
void
usart_send_string(const char* str) {
lwrb_write(&usart_tx_rb, str, strlen(str)); /* Write data to transmit buffer */
usart_start_tx_dma_transfer();
}
/**
* \brief USART3 Initialization Function
*/
void
usart_init(void) {
LL_USART_InitTypeDef USART_InitStruct = {0};
// CUBE_MX does this already
//LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
/* Peripheral clock enable */
//LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_USART3);
//LL_AHB4_GRP1_EnableClock(LL_AHB4_GRP1_PERIPH_GPIOD);
//LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1);
/*
* USART3 GPIO Configuration
*
* PD8 ------> USART3_TX
* PD9 ------> USART3_RX
*/
//GPIO_InitStruct.Pin = LL_GPIO_PIN_8 | LL_GPIO_PIN_9;
//GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
//GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
//GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
//GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
//GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
//LL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* USART3_RX Init */
// CUBE_MX does this already
//LL_DMA_SetPeriphRequest(DMA1, LL_DMA_STREAM_0, LL_DMAMUX1_REQ_USART3_RX);
//LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_STREAM_0, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
//LL_DMA_SetStreamPriorityLevel(DMA1, LL_DMA_STREAM_0, LL_DMA_PRIORITY_LOW);
//LL_DMA_SetMode(DMA1, LL_DMA_STREAM_0, LL_DMA_MODE_CIRCULAR);
//LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_STREAM_0, LL_DMA_PERIPH_NOINCREMENT);
//LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_STREAM_0, LL_DMA_MEMORY_INCREMENT);
//LL_DMA_SetPeriphSize(DMA1, LL_DMA_STREAM_0, LL_DMA_PDATAALIGN_BYTE);
//LL_DMA_SetMemorySize(DMA1, LL_DMA_STREAM_0, LL_DMA_MDATAALIGN_BYTE);
//LL_DMA_DisableFifoMode(DMA1, LL_DMA_STREAM_0);
LL_DMA_SetPeriphAddress(DMA1, LL_DMA_STREAM_0, LL_USART_DMA_GetRegAddr(USART3, LL_USART_DMA_REG_DATA_RECEIVE));
LL_DMA_SetMemoryAddress(DMA1, LL_DMA_STREAM_0, (uint32_t)usart_rx_dma_buffer);
LL_DMA_SetDataLength(DMA1, LL_DMA_STREAM_0, ARRAY_LEN(usart_rx_dma_buffer));
/* USART3_TX Init */
// CUBE_MX does this already
//LL_DMA_SetPeriphRequest(DMA1, LL_DMA_STREAM_1, LL_DMAMUX1_REQ_USART3_TX);
//LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_STREAM_1, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
//LL_DMA_SetStreamPriorityLevel(DMA1, LL_DMA_STREAM_1, LL_DMA_PRIORITY_LOW);
//LL_DMA_SetMode(DMA1, LL_DMA_STREAM_1, LL_DMA_MODE_NORMAL);
//LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_STREAM_1, LL_DMA_PERIPH_NOINCREMENT);
//LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_STREAM_1, LL_DMA_MEMORY_INCREMENT);
//LL_DMA_SetPeriphSize(DMA1, LL_DMA_STREAM_1, LL_DMA_PDATAALIGN_BYTE);
//LL_DMA_SetMemorySize(DMA1, LL_DMA_STREAM_1, LL_DMA_MDATAALIGN_BYTE);
//LL_DMA_DisableFifoMode(DMA1, LL_DMA_STREAM_1);
LL_DMA_SetPeriphAddress(DMA1, LL_DMA_STREAM_1, LL_USART_DMA_GetRegAddr(USART3, LL_USART_DMA_REG_DATA_TRANSMIT));
/* Enable DMA RX HT & TC interrupts */
LL_DMA_EnableIT_HT(DMA1, LL_DMA_STREAM_0);
LL_DMA_EnableIT_TC(DMA1, LL_DMA_STREAM_0);
/* Enable DMA TX TC interrupts */
LL_DMA_EnableIT_TC(DMA1, LL_DMA_STREAM_1);
/* DMA interrupt init */
// CUBE_MX does this already dma.c
//NVIC_SetPriority(DMA1_Stream0_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 0, 0));
//NVIC_EnableIRQ(DMA1_Stream0_IRQn);
//NVIC_SetPriority(DMA1_Stream1_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 0, 0));
//NVIC_EnableIRQ(DMA1_Stream1_IRQn);
/* Configure USART3 */
// CUBE_MX does this already usart.c
//USART_InitStruct.PrescalerValue = LL_USART_PRESCALER_DIV1;
//USART_InitStruct.BaudRate = 115200;
//USART_InitStruct.DataWidth = LL_USART_DATAWIDTH_8B;
//USART_InitStruct.StopBits = LL_USART_STOPBITS_1;
//USART_InitStruct.Parity = LL_USART_PARITY_NONE;
//USART_InitStruct.TransferDirection = LL_USART_DIRECTION_TX_RX;
//USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
//USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
//LL_USART_Init(USART3, &USART_InitStruct);
//LL_USART_SetTXFIFOThreshold(USART3, LL_USART_FIFOTHRESHOLD_7_8);
//LL_USART_SetRXFIFOThreshold(USART3, LL_USART_FIFOTHRESHOLD_7_8);
//LL_USART_EnableFIFO(USART3);
//LL_USART_ConfigAsyncMode(USART3);
LL_USART_EnableDMAReq_RX(USART3);
LL_USART_EnableDMAReq_TX(USART3);
LL_USART_EnableIT_IDLE(USART3);
/* USART interrupt, same priority as DMA channel */
// CUBE_MX does this already usart.c
//NVIC_SetPriority(USART3_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 0, 0));
//NVIC_EnableIRQ(USART3_IRQn);
/* Enable USART and DMA RX */
LL_DMA_EnableStream(DMA1, LL_DMA_STREAM_0);
//LL_USART_Enable(USART3);
/* Polling USART3 initialization */
while (!LL_USART_IsActiveFlag_TEACK(USART3) || !LL_USART_IsActiveFlag_REACK(USART3)) {}
}
/* Interrupt handlers here */
/**
* \brief DMA1 stream1 interrupt handler for USART3 RX
*/
void
DMA1_Stream0_IRQHandler(void) {
/* Check half-transfer complete interrupt */
if (LL_DMA_IsEnabledIT_HT(DMA1, LL_DMA_STREAM_0) && LL_DMA_IsActiveFlag_HT0(DMA1)) {
LL_DMA_ClearFlag_HT0(DMA1); /* Clear half-transfer complete flag */
usart_rx_check(); /* Check for data to process */
}
/* Check transfer-complete interrupt */
if (LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_STREAM_0) && LL_DMA_IsActiveFlag_TC0(DMA1)) {
LL_DMA_ClearFlag_TC0(DMA1); /* Clear transfer complete flag */
usart_rx_check(); /* Check for data to process */
}
/* Implement other events when needed */
}
/**
* \brief DMA1 stream1 interrupt handler for USART3 TX
*/
void
DMA1_Stream1_IRQHandler(void) {
/* Check transfer complete */
if (LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_STREAM_1) && LL_DMA_IsActiveFlag_TC1(DMA1)) {
LL_DMA_ClearFlag_TC1(DMA1); /* Clear transfer complete flag */
lwrb_skip(&usart_tx_rb, usart_tx_dma_current_len);/* Skip sent data, mark as read */
usart_tx_dma_current_len = 0; /* Clear length variable */
usart_start_tx_dma_transfer(); /* Start sending more data */
}
/* Implement other events when needed */
}
/**
* \brief USART3 global interrupt handler
*/
void
USART3_IRQHandler(void) {
/* Check for IDLE line interrupt */
if (LL_USART_IsEnabledIT_IDLE(USART3) && LL_USART_IsActiveFlag_IDLE(USART3)) {
LL_USART_ClearFlag_IDLE(USART3); /* Clear IDLE line flag */
usart_rx_check(); /* Check for data to process */
}
/* Implement other events when needed */
}
/**
* \brief System Clock Configuration
*/
void
SystemClock_Config(void) {
/* Configure flash latency */
LL_FLASH_SetLatency(LL_FLASH_LATENCY_4);
if (LL_FLASH_GetLatency() != LL_FLASH_LATENCY_4) {
while (1) {}
}
/* Configure power supply and voltage scale */
LL_PWR_ConfigSupply(LL_PWR_LDO_SUPPLY);
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
/* Uncomment if used on STM32H745/H755 Nucleo */
/* Dual-Core Nucleo board used external SMPS instead of LDO */
/* Manually enable it */
//PWR->CR3 |= 1 << 2;
/* Configure HSE */
LL_RCC_HSE_EnableBypass();
LL_RCC_HSE_Enable();
while (!LL_RCC_HSE_IsReady()) {}
/* Configure PLL */
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSE);
LL_RCC_PLL1P_Enable();
LL_RCC_PLL1Q_Enable();
LL_RCC_PLL1_SetVCOInputRange(LL_RCC_PLLINPUTRANGE_8_16);
LL_RCC_PLL1_SetVCOOutputRange(LL_RCC_PLLVCORANGE_WIDE);
LL_RCC_PLL1_SetM(1);
LL_RCC_PLL1_SetN(120);
LL_RCC_PLL1_SetP(2);
LL_RCC_PLL1_SetQ(20);
LL_RCC_PLL1_SetR(2);
LL_RCC_PLL1_Enable();
while (!LL_RCC_PLL1_IsReady()) {}
/* Intermediate AHB prescaler 2 when target frequency clock is higher than 80 MHz */
LL_RCC_SetAHBPrescaler(LL_RCC_AHB_DIV_2);
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
LL_RCC_SetSysPrescaler(LL_RCC_SYSCLK_DIV_1);
LL_RCC_SetAHBPrescaler(LL_RCC_AHB_DIV_2);
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2);
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_2);
LL_RCC_SetAPB3Prescaler(LL_RCC_APB3_DIV_2);
LL_RCC_SetAPB4Prescaler(LL_RCC_APB4_DIV_2);
/* Configure systick */
LL_Init1msTick(480000000);
LL_SYSTICK_SetClkSource(LL_SYSTICK_CLKSOURCE_HCLK);
LL_SetSystemCoreClock(480000000);
LL_RCC_SetUSARTClockSource(LL_RCC_USART234578_CLKSOURCE_PCLK1);
}