added minmal libaries
This commit is contained in:
391
lib/uart_driver/AsyncComm.c
Normal file
391
lib/uart_driver/AsyncComm.c
Normal file
@@ -0,0 +1,391 @@
|
||||
/**
|
||||
* @file CBSP_AsyncComm.c
|
||||
* @author owalter
|
||||
* @brief Continuus receive UART-driver based on circular DMA
|
||||
* @version 0.1
|
||||
* @date 28.11.2022
|
||||
*
|
||||
* driver based on example imlementation of https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx
|
||||
*
|
||||
* @copyright Copyright © 2022 habemus! electronic + transfer GmbH. All rights reserved.
|
||||
*/
|
||||
|
||||
#include "AsyncComm.h"
|
||||
|
||||
#include "stm32h7xx_ll_dma.h"
|
||||
#include "stm32h7xx_ll_usart.h"
|
||||
|
||||
#ifndef USE_HAL_DRIVER
|
||||
#include "stm32l4xx_ll_gpio.h"
|
||||
#endif
|
||||
|
||||
void usart_rx_check(const uart_desc_t* uart);
|
||||
void usart_process_data(const uart_desc_t* uart, const void* data, size_t len);
|
||||
void usart_send_string(const uart_desc_t* uart, const char* str);
|
||||
|
||||
/**
|
||||
* \brief USART DMA check thread
|
||||
* \param[in] arg: Thread argument
|
||||
*/
|
||||
_Noreturn void usart_rx_dma_thread(void* arg) {
|
||||
uart_desc_t* uart = arg;
|
||||
void* d;
|
||||
|
||||
/* Notify user to start sending data */
|
||||
// usart_send_string(uart, "USART DMA example: DMA HT & TC + USART IDLE LINE IRQ + RTOS processing\r\n");
|
||||
// usart_send_string(uart, "Start sending data to STM32\r\n");
|
||||
|
||||
while (1) {
|
||||
/* Block thread and wait for event to process USART data */
|
||||
osMessageQueueGet(uart->data->queue, &d, NULL, osWaitForever);
|
||||
|
||||
/* Simply call processing function */
|
||||
usart_rx_check(uart);
|
||||
|
||||
(void)d;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Check for new data received with DMA
|
||||
*
|
||||
* User must select context to call this function from:
|
||||
* - Only interrupts (DMA HT, DMA TC, UART IDLE) with same preemption priority level
|
||||
* - Only thread context (outside interrupts)
|
||||
*
|
||||
* If called from both context-es, exclusive access protection must be implemented
|
||||
* This mode is not advised as it usually means architecture design problems
|
||||
*
|
||||
* When IDLE interrupt is not present, application must rely only on thread context,
|
||||
* by manually calling function as quickly as possible, to make sure
|
||||
* data are read from raw buffer and processed.
|
||||
*
|
||||
* Not doing reads fast enough may cause DMA to overflow unread received bytes,
|
||||
* hence application will lost useful data.
|
||||
*
|
||||
* Solutions to this are:
|
||||
* - Improve architecture design to achieve faster reads
|
||||
* - Increase raw buffer size and allow DMA to write more data before this function is called
|
||||
*/
|
||||
void usart_rx_check(const uart_desc_t* uart) {
|
||||
size_t pos;
|
||||
|
||||
/* Calculate current position in buffer and check for new data available */
|
||||
pos = ARRAY_LEN(uart->data->dma_rx_buffer) - LL_DMA_GetDataLength(uart->dma_rx, uart->dma_rx_ch);
|
||||
if (pos != uart->data->old_pos) { /* Check change in received data */
|
||||
if (pos > uart->data->old_pos) { /* Current position is over previous one */
|
||||
/*
|
||||
* Processing is done in "linear" mode.
|
||||
*
|
||||
* Application processing is fast with single data block,
|
||||
* length is simply calculated by subtracting pointers
|
||||
*
|
||||
* [ 0 ]
|
||||
* [ 1 ] <- old_pos |------------------------------------|
|
||||
* [ 2 ] | |
|
||||
* [ 3 ] | Single block (len = pos - old_pos) |
|
||||
* [ 4 ] | |
|
||||
* [ 5 ] |------------------------------------|
|
||||
* [ 6 ] <- pos
|
||||
* [ 7 ]
|
||||
* [ N - 1 ]
|
||||
*/
|
||||
usart_process_data(uart, &uart->data->dma_rx_buffer[uart->data->old_pos], pos - uart->data->old_pos);
|
||||
} else {
|
||||
/*
|
||||
* Processing is done in "overflow" mode..
|
||||
*
|
||||
* Application must process data twice,
|
||||
* since there are 2 linear memory blocks to handle
|
||||
*
|
||||
* [ 0 ] |---------------------------------|
|
||||
* [ 1 ] | Second block (len = pos) |
|
||||
* [ 2 ] |---------------------------------|
|
||||
* [ 3 ] <- pos
|
||||
* [ 4 ] <- old_pos |---------------------------------|
|
||||
* [ 5 ] | |
|
||||
* [ 6 ] | First block (len = N - old_pos) |
|
||||
* [ 7 ] | |
|
||||
* [ N - 1 ] |---------------------------------|
|
||||
*/
|
||||
usart_process_data(uart, &uart->data->dma_rx_buffer[uart->data->old_pos],
|
||||
ARRAY_LEN(uart->data->dma_rx_buffer) - uart->data->old_pos);
|
||||
if (pos > 0) {
|
||||
usart_process_data(uart, &uart->data->dma_rx_buffer[0], pos);
|
||||
}
|
||||
}
|
||||
uart->data->old_pos = pos; /* Save current position as old for next transfers */
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Check if DMA is active and if not try to send data
|
||||
* \return `1` if transfer just started, `0` if on-going or no data to transmit
|
||||
*/
|
||||
uint8_t usart_start_tx_dma_transfer(const uart_desc_t* uart) {
|
||||
uint32_t primask;
|
||||
uint8_t started = 0;
|
||||
|
||||
/*
|
||||
* First check if transfer is currently in-active,
|
||||
* by examining the value of usart_tx_dma_current_len variable.
|
||||
*
|
||||
* This variable is set before DMA transfer is started and cleared in DMA TX complete interrupt.
|
||||
*
|
||||
* It is not necessary to disable the interrupts before checking the variable:
|
||||
*
|
||||
* When usart_tx_dma_current_len == 0
|
||||
* - This function is called by either application or TX DMA interrupt
|
||||
* - When called from interrupt, it was just reset before the call,
|
||||
* indicating transfer just completed and ready for more
|
||||
* - When called from an application, transfer was previously already in-active
|
||||
* and immediate call from interrupt cannot happen at this moment
|
||||
*
|
||||
* When usart_tx_dma_current_len != 0
|
||||
* - This function is called only by an application.
|
||||
* - It will never be called from interrupt with usart_tx_dma_current_len != 0 condition
|
||||
*
|
||||
* Disabling interrupts before checking for next transfer is advised
|
||||
* only if multiple operating system threads can access to this function w/o
|
||||
* exclusive access protection (mutex) configured,
|
||||
* or if application calls this function from multiple interrupts.
|
||||
*
|
||||
* This example assumes worst use case scenario,
|
||||
* hence interrupts are disabled prior every check
|
||||
*/
|
||||
primask = __get_PRIMASK();
|
||||
__disable_irq();
|
||||
if (uart->data->tx_dma_current_len == 0 &&
|
||||
(uart->data->tx_dma_current_len = lwrb_get_linear_block_read_length(&uart->data->tx_rb)) > 0) {
|
||||
/* Disable channel if enabled */
|
||||
LL_DMA_DisableStream(uart->dma_tx, uart->dma_tx_ch);
|
||||
|
||||
/* Clear all flags */
|
||||
uart->dma_tx_clear_tc_fn(uart->dma_tx);
|
||||
uart->dma_tx_clear_ht_fn(uart->dma_tx);
|
||||
uart->dma_tx_clear_gi_fn(uart->dma_tx);
|
||||
uart->dma_tx_clear_te_fn(uart->dma_tx);
|
||||
uart->dma_tx_clear_fe_fn(uart->dma_tx);
|
||||
|
||||
/* Prepare DMA data and length */
|
||||
LL_DMA_SetDataLength(uart->dma_tx, uart->dma_tx_ch, uart->data->tx_dma_current_len);
|
||||
LL_DMA_SetMemoryAddress(uart->dma_tx, uart->dma_tx_ch,
|
||||
(uint32_t)lwrb_get_linear_block_read_address(&uart->data->tx_rb));
|
||||
|
||||
/* Start transfer */
|
||||
LL_DMA_EnableStream(uart->dma_tx, uart->dma_tx_ch);
|
||||
uart->data->tx_running = 1;
|
||||
started = 1;
|
||||
}
|
||||
__set_PRIMASK(primask);
|
||||
return started;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Process received data over UART
|
||||
* \note Either process them directly or copy to other bigger buffer
|
||||
* \param[in] data: Data to process
|
||||
* \param[in] len: Length in units of bytes
|
||||
*/
|
||||
void usart_process_data(const uart_desc_t* uart, const void* data, size_t len) {
|
||||
/*
|
||||
* This function is called on DMA TC or HT events, and on UART IDLE (if enabled) event.
|
||||
*/
|
||||
uart->uart_external_receive_callback(data, len);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Send data over UART
|
||||
* \note copy data into ringbuffer and trigger UART transmission
|
||||
* \param[in] data: Data to process
|
||||
* \param[in] len: Length in units of bytes
|
||||
*/
|
||||
void usart_send_data(const uart_desc_t* uart, const void* data, size_t len) {
|
||||
lwrb_write(&uart->data->tx_rb, data, len); /* Write data to TX buffer */
|
||||
usart_start_tx_dma_transfer(uart); /* Then try to start transfer */
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Send string to USART
|
||||
* \param[in] str: String to send
|
||||
*/
|
||||
void usart_send_string(const uart_desc_t* uart, const char* str) {
|
||||
lwrb_write(&uart->data->tx_rb, str, strnlen(str, 255)); /* Write data to TX buffer for loopback */
|
||||
usart_start_tx_dma_transfer(uart); /* Then try to start transfer */
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief USART DMA Initialization Function
|
||||
* other init is handled by MX_HAL
|
||||
*/
|
||||
osThreadId_t usart_init(const uart_desc_t* uart, const osThreadAttr_t* attr) {
|
||||
|
||||
#ifndef USE_HAL_DRIVER
|
||||
LL_USART_InitTypeDef USART_InitStruct = { 0 };
|
||||
LL_GPIO_InitTypeDef GPIO_InitStruct = { 0 };
|
||||
|
||||
/* USART GPIO Configuration */
|
||||
/* RX pin */
|
||||
GPIO_InitStruct.Pin = uart->uart_rx_pin;
|
||||
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
|
||||
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
|
||||
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
|
||||
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
|
||||
GPIO_InitStruct.Alternate = uart->uart_rx_pin_af;
|
||||
LL_GPIO_Init(uart->uart_rx_port, &GPIO_InitStruct);
|
||||
|
||||
/* Optional TX pin */
|
||||
if (uart->uart_tx_port != NULL) {
|
||||
GPIO_InitStruct.Pin = uart->uart_tx_pin;
|
||||
GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
|
||||
GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_VERY_HIGH;
|
||||
GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
|
||||
GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
|
||||
GPIO_InitStruct.Alternate = uart->uart_tx_pin_af;
|
||||
LL_GPIO_Init(uart->uart_tx_port, &GPIO_InitStruct);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* USART RX DMA init */
|
||||
#ifndef USE_HAL_DRIVER
|
||||
LL_DMA_SetPeriphRequest(uart->dma_rx, uart->dma_rx_ch, uart->dma_rx, uart->dma_rx_req);
|
||||
LL_DMA_SetDataTransferDirection(uart->dma_rx, uart->dma_rx_ch, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
|
||||
LL_DMA_SetChannelPriorityLevel(uart->dma_rx, uart->dma_rx_ch, LL_DMA_PRIORITY_LOW);
|
||||
LL_DMA_SetMode(uart->dma_rx, uart->dma_rx_ch, LL_DMA_MODE_NORMAL);
|
||||
LL_DMA_SetPeriphIncMode(uart->dma_rx, uart->dma_rx_ch, LL_DMA_PERIPH_NOINCREMENT);
|
||||
LL_DMA_SetMemoryIncMode(uart->dma_rx, uart->dma_rx_ch, LL_DMA_MEMORY_INCREMENT);
|
||||
LL_DMA_SetPeriphSize(uart->dma_rx, uart->dma_rx_ch, LL_DMA_PDATAALIGN_BYTE);
|
||||
LL_DMA_SetMemorySize(uart->dma_rx, uart->dma_rx_ch, LL_DMA_MDATAALIGN_BYTE);
|
||||
#endif
|
||||
LL_DMA_SetPeriphAddress(uart->dma_rx, uart->dma_rx_ch,
|
||||
LL_USART_DMA_GetRegAddr(uart->uart, LL_USART_DMA_REG_DATA_RECEIVE));
|
||||
LL_DMA_SetMemoryAddress(uart->dma_rx, uart->dma_rx_ch, (uint32_t)uart->data->dma_rx_buffer);
|
||||
LL_DMA_SetDataLength(uart->dma_rx, uart->dma_rx_ch, ARRAY_LEN(uart->data->dma_rx_buffer));
|
||||
|
||||
/* USART TX DMA init */
|
||||
#ifndef USE_HAL_DRIVER
|
||||
LL_DMA_SetPeriphRequest(uart->dma_tx, uart->dma_tx_ch, uart->dma_tx, uart->dma_tx_req);
|
||||
LL_DMA_SetDataTransferDirection(uart->dma_tx, uart->dma_tx_ch, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
|
||||
LL_DMA_SetChannelPriorityLevel(uart->dma_tx, uart->dma_tx_ch, LL_DMA_PRIORITY_LOW);
|
||||
LL_DMA_SetMode(uart->dma_tx, uart->dma_tx_ch, LL_DMA_MODE_NORMAL);
|
||||
LL_DMA_SetPeriphIncMode(uart->dma_tx, uart->dma_tx_ch, LL_DMA_PERIPH_NOINCREMENT);
|
||||
LL_DMA_SetMemoryIncMode(uart->dma_tx, uart->dma_tx_ch, LL_DMA_MEMORY_INCREMENT);
|
||||
LL_DMA_SetPeriphSize(uart->dma_tx, uart->dma_tx_ch, LL_DMA_PDATAALIGN_BYTE);
|
||||
LL_DMA_SetMemorySize(uart->dma_tx, uart->dma_tx_ch, LL_DMA_MDATAALIGN_BYTE);
|
||||
#endif
|
||||
LL_DMA_SetPeriphAddress(uart->dma_tx, uart->dma_tx_ch,
|
||||
LL_USART_DMA_GetRegAddr(uart->uart, LL_USART_DMA_REG_DATA_TRANSMIT));
|
||||
|
||||
/* Enable HT & TC interrupts */
|
||||
LL_DMA_EnableIT_HT(uart->dma_rx, uart->dma_rx_ch);
|
||||
LL_DMA_EnableIT_TC(uart->dma_rx, uart->dma_rx_ch);
|
||||
|
||||
/* Enable TC interrupts for TX */
|
||||
LL_DMA_EnableIT_TC(uart->dma_tx, uart->dma_tx_ch);
|
||||
|
||||
|
||||
/* DMA interrupt init */
|
||||
#ifndef USE_HAL_DRIVER
|
||||
NVIC_SetPriority(uart->dma_irq_rx, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), uart->prio, 0));
|
||||
NVIC_EnableIRQ(uart->dma_irq_rx);
|
||||
NVIC_SetPriority(uart->dma_irq_tx, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), uart->prio, 0));
|
||||
NVIC_EnableIRQ(uart->dma_irq_tx);
|
||||
#endif
|
||||
|
||||
/* USART configuration */
|
||||
#ifndef USE_HAL_DRIVER
|
||||
USART_InitStruct.BaudRate = uart->uart_baudrate;
|
||||
USART_InitStruct.DataWidth = LL_USART_DATAWIDTH_8B;
|
||||
USART_InitStruct.StopBits = LL_USART_STOPBITS_1;
|
||||
USART_InitStruct.Parity = LL_USART_PARITY_NONE;
|
||||
USART_InitStruct.TransferDirection = LL_USART_DIRECTION_TX_RX;
|
||||
USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
|
||||
USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
|
||||
LL_USART_Init(uart->uart, &USART_InitStruct);
|
||||
LL_USART_ConfigAsyncMode(uart->uart);
|
||||
#endif
|
||||
LL_USART_Disable(uart->uart);
|
||||
LL_USART_EnableDMAReq_RX(uart->uart);
|
||||
LL_USART_EnableDMAReq_TX(uart->uart);
|
||||
LL_USART_EnableIT_IDLE(uart->uart);
|
||||
|
||||
/* USART interrupt */
|
||||
#ifndef USE_HAL_DRIVER
|
||||
NVIC_SetPriority(uart->uart_irq, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), uart->prio, 1));
|
||||
NVIC_EnableIRQ(uart->uart_irq);
|
||||
#endif
|
||||
|
||||
/* Create message queue before enabling UART or DMA */
|
||||
/* This is to make sure message queue is ready before UART/DMA interrupts are enabled */
|
||||
uart->data->queue = osMessageQueueNew(10, sizeof(void*), NULL);
|
||||
|
||||
/*init tx ringbuffer*/
|
||||
lwrb_init(&uart->data->tx_rb, uart->data->tx_rb_data, sizeof(uart->data->tx_rb_data));
|
||||
|
||||
/* Enable USART and DMA */
|
||||
LL_DMA_EnableStream(uart->dma_rx, uart->dma_rx_ch);
|
||||
LL_USART_Enable(uart->uart);
|
||||
|
||||
/* Create new thread for USART RX DMA processing */
|
||||
return osThreadNew(usart_rx_dma_thread, (void*)uart, attr);
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief General purpose DMA interrupt handler
|
||||
* \note Function must be called from DMA interrupt
|
||||
*
|
||||
* It handles half-transfer and transfer-cmakecomplete interrupts and does the job accordingly
|
||||
*
|
||||
* must be called from the IT function with the correct context pointer
|
||||
*
|
||||
* \param[in] uart: Uart description to handle
|
||||
*/
|
||||
void usart_dma_irq_handler(const uart_desc_t* uart) {
|
||||
void* d = (void*)1;
|
||||
|
||||
/* Check half-transfer complete interrupt */
|
||||
if (LL_DMA_IsEnabledIT_HT(uart->dma_rx, uart->dma_rx_ch) && uart->dma_rx_is_ht_fn(uart->dma_rx)) {
|
||||
uart->dma_rx_clear_ht_fn(uart->dma_rx); /* Clear half-transfer complete flag */
|
||||
osMessageQueuePut(uart->data->queue, &d, 0, 0); /* Write data to queue. Do not use wait function! */
|
||||
}
|
||||
|
||||
/* Check transfer-complete interrupt */
|
||||
if (LL_DMA_IsEnabledIT_TC(uart->dma_rx, uart->dma_rx_ch) && uart->dma_rx_is_tc_fn(uart->dma_rx)) {
|
||||
uart->dma_rx_clear_tc_fn(uart->dma_rx); /* Clear transfer complete flag */
|
||||
osMessageQueuePut(uart->data->queue, &d, 0, 0); /* Write data to queue. Do not use wait function! */
|
||||
}
|
||||
}
|
||||
|
||||
/// must be called from the IT function with the correct context pointer
|
||||
void usart_dma_irq_handler_tx(const uart_desc_t* uart) {
|
||||
/* Check transfer-complete interrupt */
|
||||
if (LL_DMA_IsEnabledIT_TC(uart->dma_tx, uart->dma_tx_ch) && uart->dma_tx_is_tc_fn(uart->dma_tx)) {
|
||||
uart->dma_tx_clear_tc_fn(uart->dma_tx);
|
||||
/* Clear transfer complete flag */
|
||||
lwrb_skip(&uart->data->tx_rb,
|
||||
uart->data->tx_dma_current_len); /* Skip buffer, it has been successfully sent out */
|
||||
uart->data->tx_dma_current_len = 0; /* Reset data length */
|
||||
uart->data->tx_running = 0;
|
||||
usart_start_tx_dma_transfer(uart); /* Start new transfer */
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief General purpose UART interrupt handler
|
||||
* \note Function must be called from UART interrupt
|
||||
*
|
||||
* It handles IDLE line detection interrupt and does the job accordingly
|
||||
*
|
||||
* must be called from the IT function with the correct context pointer
|
||||
*
|
||||
* \param[in] uart: Uart description to handle
|
||||
*/
|
||||
void usart_irq_handler(const uart_desc_t* uart) {
|
||||
void* d = (void*)1;
|
||||
|
||||
/* Check for IDLE line interrupt */
|
||||
if (LL_USART_IsEnabledIT_IDLE(uart->uart) && LL_USART_IsActiveFlag_IDLE(uart->uart)) {
|
||||
LL_USART_ClearFlag_IDLE(uart->uart); /* Clear IDLE line flag */
|
||||
osMessageQueuePut(uart->data->queue, &d, 0, 0); /* Write data to queue. Do not use wait function! */
|
||||
}
|
||||
}
|
||||
108
lib/uart_driver/AsyncComm.h
Normal file
108
lib/uart_driver/AsyncComm.h
Normal file
@@ -0,0 +1,108 @@
|
||||
/**
|
||||
* @file CBSP_AsyncComm.h
|
||||
* @author owalter
|
||||
* @brief
|
||||
* @version 0.1
|
||||
|
||||
* @date 28.11.2022
|
||||
*
|
||||
* @copyright Copyright © 2022 habemus! electronic + transfer GmbH. All rights reserved.
|
||||
*/
|
||||
#ifndef NUN10K22_DISPLAY_CBSP_ASYNCCOMM_H
|
||||
#define NUN10K22_DISPLAY_CBSP_ASYNCCOMM_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#include "cmsis_os.h"
|
||||
#include "lwrb.h"
|
||||
#include "main.h"
|
||||
|
||||
typedef void (*data_receive_callback)(const void* data, size_t len);
|
||||
typedef void (*char_receive_callback)(const char* str, size_t len);
|
||||
typedef void (*bytes_receive_callback)(const uint8_t* str, size_t len);
|
||||
|
||||
/**
|
||||
* \brief Volatile data structure
|
||||
*
|
||||
* Variables declared using this structure can not be put to non-volatile memory (such as flash, EEPROM, ..)
|
||||
*/
|
||||
typedef struct {
|
||||
/* OS queue */
|
||||
osMessageQueueId_t queue; /*!< Message queue */
|
||||
|
||||
/* Raw data buffer */
|
||||
uint8_t dma_rx_buffer[1024]; /*!< DMA buffer for receive data */
|
||||
size_t old_pos; /*!< Position for data */
|
||||
|
||||
/* Tx data buffer */
|
||||
volatile size_t tx_dma_current_len;
|
||||
volatile uint8_t tx_running;
|
||||
lwrb_t tx_rb;
|
||||
uint8_t tx_rb_data[512];
|
||||
} uart_desc_volatile_t;
|
||||
|
||||
/**
|
||||
* \brief Non-Volatile data structure
|
||||
*
|
||||
* Variables declared using this structure may be put to non-volative memory.
|
||||
* This is to avoid using RAM for constant data
|
||||
*/
|
||||
typedef struct {
|
||||
/* UART config */
|
||||
USART_TypeDef* uart; /*!< UART/USART/LPUART instance */
|
||||
#ifndef USE_HAL_DRIVER
|
||||
GPIO_TypeDef* uart_tx_port;
|
||||
GPIO_TypeDef* uart_rx_port;
|
||||
uint16_t uart_tx_pin;
|
||||
uint16_t uart_rx_pin;
|
||||
uint16_t uart_tx_pin_af;
|
||||
uint16_t uart_rx_pin_af;
|
||||
|
||||
/* Interrupts config */
|
||||
uint8_t prio; /*!< Preemption priority number */
|
||||
IRQn_Type uart_irq; /*!< UART IRQ instance */
|
||||
IRQn_Type dma_irq_rx; /*!< DMA IRQ RX instance */
|
||||
IRQn_Type dma_irq_tx; /*!< DMA IRQ TX instance */
|
||||
|
||||
/* DMA config & flags management */
|
||||
uint32_t dma_rx_req; /*!< RX DMA request */
|
||||
uint32_t dma_tx_req; /*!< TX DMA request */
|
||||
|
||||
#endif
|
||||
|
||||
DMA_TypeDef* dma_rx; /*!< RX DMA instance */
|
||||
uint32_t dma_rx_ch; /*!< RX DMA channel */
|
||||
void (*dma_rx_clear_tc_fn)(DMA_TypeDef*);
|
||||
void (*dma_rx_clear_ht_fn)(DMA_TypeDef*);
|
||||
uint32_t (*dma_rx_is_tc_fn)(DMA_TypeDef*);
|
||||
uint32_t (*dma_rx_is_ht_fn)(DMA_TypeDef*);
|
||||
|
||||
DMA_TypeDef* dma_tx; /*!< TX DMA instance */
|
||||
uint32_t dma_tx_ch; /*!< TX DMA channel */
|
||||
void (*dma_tx_clear_tc_fn)(DMA_TypeDef*);
|
||||
uint32_t (*dma_tx_is_tc_fn)(DMA_TypeDef*);
|
||||
void (*dma_tx_clear_ht_fn)(DMA_TypeDef*);
|
||||
void (*dma_tx_clear_gi_fn)(DMA_TypeDef*);
|
||||
void (*dma_tx_clear_te_fn)(DMA_TypeDef*);
|
||||
void (*dma_tx_clear_fe_fn)(DMA_TypeDef*);
|
||||
|
||||
uart_desc_volatile_t* data; /*!< Pointer to volatile data */
|
||||
|
||||
/* receive callback */
|
||||
data_receive_callback uart_external_receive_callback;
|
||||
|
||||
} uart_desc_t;
|
||||
|
||||
/* USART related functions */
|
||||
osThreadId_t usart_init(const uart_desc_t* uart, const osThreadAttr_t* attr);
|
||||
void usart_dma_irq_handler(const uart_desc_t* uart);
|
||||
void usart_dma_irq_handler_tx(const uart_desc_t* uart);
|
||||
void usart_irq_handler(const uart_desc_t* uart);
|
||||
void usart_send_data(const uart_desc_t* uart, const void* data, size_t len);
|
||||
|
||||
/**
|
||||
* \brief Calculate length of statically allocated array
|
||||
*/
|
||||
#define ARRAY_LEN(x) (sizeof(x) / sizeof((x)[0]))
|
||||
|
||||
#endif // NUN10K22_DISPLAY_CBSP_ASYNCCOMM_H
|
||||
5
lib/uart_driver/AsyncFrames.c
Normal file
5
lib/uart_driver/AsyncFrames.c
Normal file
@@ -0,0 +1,5 @@
|
||||
//
|
||||
// Created by oliver on 12/8/23.
|
||||
//
|
||||
|
||||
#include "AsyncFrames.h"
|
||||
17
lib/uart_driver/AsyncFrames.h
Normal file
17
lib/uart_driver/AsyncFrames.h
Normal file
@@ -0,0 +1,17 @@
|
||||
//
|
||||
// Created by oliver on 12/8/23.
|
||||
//
|
||||
|
||||
#ifndef MASTERCOMMISION_ASYNCFAMES_H
|
||||
#define MASTERCOMMISION_ASYNCFAMES_H
|
||||
|
||||
|
||||
#include "stdint.h"
|
||||
|
||||
typedef struct AsyncFrameHeader_s {
|
||||
uint16_t sof;
|
||||
uint16_t leng;
|
||||
} AsyncFrameHeader_t;
|
||||
|
||||
|
||||
#endif //MASTERCOMMISION_ASYNCFAMES_H
|
||||
20
lib/uart_driver/CMakeLists.txt
Normal file
20
lib/uart_driver/CMakeLists.txt
Normal file
@@ -0,0 +1,20 @@
|
||||
cmake_minimum_required(VERSION 3.12)
|
||||
|
||||
project(uart_driver C)
|
||||
|
||||
add_library(${PROJECT_NAME} "")
|
||||
target_sources(${PROJECT_NAME}
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_LIST_DIR}/AsyncComm.c
|
||||
${CMAKE_CURRENT_LIST_DIR}/AsyncFrames.c
|
||||
INTERFACE
|
||||
${CMAKE_CURRENT_LIST_DIR}/AsyncComm.h
|
||||
${CMAKE_CURRENT_LIST_DIR}/AsyncFrames.h
|
||||
)
|
||||
|
||||
target_include_directories(${PROJECT_NAME}
|
||||
INTERFACE
|
||||
${CMAKE_CURRENT_LIST_DIR}
|
||||
)
|
||||
|
||||
target_link_libraries(${PROJECT_NAME} PUBLIC lwrb)
|
||||
546
lib/uart_driver/main.c
Normal file
546
lib/uart_driver/main.c
Normal file
@@ -0,0 +1,546 @@
|
||||
/*
|
||||
* This example shows how application can implement RX and TX DMA for UART.
|
||||
* It uses simple packet example approach and 3 separate buffers:
|
||||
*
|
||||
* - Raw DMA RX buffer where DMA transfers data from UART to memory
|
||||
* - Ringbuff for RX data which are transfered from raw buffer and ready for application processin
|
||||
* - Ringbuff for TX data to be sent out by DMA TX
|
||||
*/
|
||||
|
||||
/* Includes */
|
||||
#include "main.h"
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "lwrb.h"
|
||||
|
||||
/* Private function prototypes */
|
||||
void SystemClock_Config(void);
|
||||
|
||||
/* USART related functions */
|
||||
void usart_init(void);
|
||||
void usart_rx_check(void);
|
||||
void usart_process_data(const void* data, size_t len);
|
||||
void usart_send_string(const char* str);
|
||||
uint8_t usart_start_tx_dma_transfer(void);
|
||||
|
||||
/**
|
||||
* \brief Calculate length of statically allocated array
|
||||
*/
|
||||
#define ARRAY_LEN(x) (sizeof(x) / sizeof((x)[0]))
|
||||
|
||||
/**
|
||||
* \brief USART RX buffer for DMA to transfer every received byte RX
|
||||
* \note Contains raw data that are about to be processed by different events
|
||||
*
|
||||
* Special use case for STM32H7 series.
|
||||
* Default memory configuration in STM32H7 may put variables to DTCM RAM,
|
||||
* part of memory that is super fast, however DMA has no access to it.
|
||||
*
|
||||
* For this specific example, all variables are by default
|
||||
* configured in D1 RAM. This is configured in linker script
|
||||
*/
|
||||
uint8_t
|
||||
usart_rx_dma_buffer[64];
|
||||
|
||||
/**
|
||||
* \brief Ring buffer instance for TX data
|
||||
*/
|
||||
lwrb_t
|
||||
usart_rx_rb;
|
||||
|
||||
/**
|
||||
* \brief Ring buffer data array for RX DMA
|
||||
*/
|
||||
uint8_t
|
||||
usart_rx_rb_data[128];
|
||||
|
||||
/**
|
||||
* \brief Ring buffer instance for TX data
|
||||
*/
|
||||
lwrb_t
|
||||
usart_tx_rb;
|
||||
|
||||
/**
|
||||
* \brief Ring buffer data array for TX DMA
|
||||
*/
|
||||
uint8_t
|
||||
usart_tx_rb_data[128];
|
||||
|
||||
/**
|
||||
* \brief Length of currently active TX DMA transfer
|
||||
*/
|
||||
volatile size_t
|
||||
usart_tx_dma_current_len;
|
||||
|
||||
/**
|
||||
* \brief Application entry point
|
||||
*/
|
||||
int
|
||||
main(void) {
|
||||
uint8_t state, cmd, len;
|
||||
|
||||
/* MCU Configuration */
|
||||
// SCB_DisableDCache();
|
||||
// SCB_DisableICache();
|
||||
|
||||
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
|
||||
LL_APB4_GRP1_EnableClock(LL_APB4_GRP1_PERIPH_SYSCFG);
|
||||
|
||||
/* Configure the system clock */
|
||||
SystemClock_Config();
|
||||
|
||||
/* Initialize ringbuff for TX & RX */
|
||||
lwrb_init(&usart_tx_rb, usart_tx_rb_data, sizeof(usart_tx_rb_data));
|
||||
lwrb_init(&usart_rx_rb, usart_rx_rb_data, sizeof(usart_rx_rb_data));
|
||||
|
||||
/* Initialize all configured peripherals */
|
||||
usart_init();
|
||||
usart_send_string("USART DMA example: DMA HT & TC + USART IDLE LINE interrupts\r\n");
|
||||
usart_send_string("Start sending data to STM32\r\n");
|
||||
|
||||
/* After this point, do not use usart_send_string function anymore */
|
||||
/* Send packet data over UART from PC (or other STM32 device) */
|
||||
|
||||
/* Infinite loop */
|
||||
state = 0;
|
||||
while (1) {
|
||||
uint8_t b;
|
||||
|
||||
/* Process RX ringbuffer */
|
||||
|
||||
/* Packet format: START_BYTE, CMD, LEN[, DATA[0], DATA[len - 1]], STOP BYTE */
|
||||
/* DATA bytes are included only if LEN > 0 */
|
||||
/* An example, send sequence of these bytes: 0x55, 0x01, 0x01, 0xFF, 0xAA */
|
||||
|
||||
/* Read byte by byte */
|
||||
|
||||
if (lwrb_read(&usart_rx_rb, &b, 1) == 1) {
|
||||
lwrb_write(&usart_tx_rb, &b, 1); /* Write data to transmit buffer */
|
||||
usart_start_tx_dma_transfer();
|
||||
switch (state) {
|
||||
case 0: { /* Wait for start byte */
|
||||
if (b == 0x55) {
|
||||
++state;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 1: { /* Check packet command */
|
||||
cmd = b;
|
||||
++state;
|
||||
break;
|
||||
}
|
||||
case 2: { /* Packet data length */
|
||||
len = b;
|
||||
++state;
|
||||
if (len == 0) {
|
||||
++state; /* Ignore data part if len = 0 */
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 3: { /* Data for command */
|
||||
--len; /* Decrease for received character */
|
||||
if (len == 0) {
|
||||
++state;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 4: { /* End of packet */
|
||||
if (b == 0xAA) {
|
||||
/* Packet is valid */
|
||||
|
||||
/* Send out response with CMD = 0xFF */
|
||||
b = 0x55; /* Start byte */
|
||||
lwrb_write(&usart_tx_rb, &b, 1);
|
||||
cmd = 0xFF; /* Command = 0xFF = OK response */
|
||||
lwrb_write(&usart_tx_rb, &cmd, 1);
|
||||
b = 0x00; /* Len = 0 */
|
||||
lwrb_write(&usart_tx_rb, &b, 1);
|
||||
b = 0xAA; /* Stop byte */
|
||||
lwrb_write(&usart_tx_rb, &b, 1);
|
||||
|
||||
/* Flush everything */
|
||||
usart_start_tx_dma_transfer();
|
||||
}
|
||||
state = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Do other tasks ... */
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Check for new data received with DMA
|
||||
*
|
||||
* User must select context to call this function from:
|
||||
* - Only interrupts (DMA HT, DMA TC, UART IDLE) with same preemption priority level
|
||||
* - Only thread context (outside interrupts)
|
||||
*
|
||||
* If called from both context-es, exclusive access protection must be implemented
|
||||
* This mode is not advised as it usually means architecture design problems
|
||||
*
|
||||
* When IDLE interrupt is not present, application must rely only on thread context,
|
||||
* by manually calling function as quickly as possible, to make sure
|
||||
* data are read from raw buffer and processed.
|
||||
*
|
||||
* Not doing reads fast enough may cause DMA to overflow unread received bytes,
|
||||
* hence application will lost useful data.
|
||||
*
|
||||
* Solutions to this are:
|
||||
* - Improve architecture design to achieve faster reads
|
||||
* - Increase raw buffer size and allow DMA to write more data before this function is called
|
||||
*/
|
||||
void
|
||||
usart_rx_check(void) {
|
||||
static size_t old_pos;
|
||||
size_t pos;
|
||||
|
||||
/* Calculate current position in buffer and check for new data available */
|
||||
pos = ARRAY_LEN(usart_rx_dma_buffer) - LL_DMA_GetDataLength(DMA1, LL_DMA_STREAM_0);
|
||||
if (pos != old_pos) { /* Check change in received data */
|
||||
if (pos > old_pos) { /* Current position is over previous one */
|
||||
/*
|
||||
* Processing is done in "linear" mode.
|
||||
*
|
||||
* Application processing is fast with single data block,
|
||||
* length is simply calculated by subtracting pointers
|
||||
*
|
||||
* [ 0 ]
|
||||
* [ 1 ] <- old_pos |------------------------------------|
|
||||
* [ 2 ] | |
|
||||
* [ 3 ] | Single block (len = pos - old_pos) |
|
||||
* [ 4 ] | |
|
||||
* [ 5 ] |------------------------------------|
|
||||
* [ 6 ] <- pos
|
||||
* [ 7 ]
|
||||
* [ N - 1 ]
|
||||
*/
|
||||
usart_process_data(&usart_rx_dma_buffer[old_pos], pos - old_pos);
|
||||
} else {
|
||||
/*
|
||||
* Processing is done in "overflow" mode..
|
||||
*
|
||||
* Application must process data twice,
|
||||
* since there are 2 linear memory blocks to handle
|
||||
*
|
||||
* [ 0 ] |---------------------------------|
|
||||
* [ 1 ] | Second block (len = pos) |
|
||||
* [ 2 ] |---------------------------------|
|
||||
* [ 3 ] <- pos
|
||||
* [ 4 ] <- old_pos |---------------------------------|
|
||||
* [ 5 ] | |
|
||||
* [ 6 ] | First block (len = N - old_pos) |
|
||||
* [ 7 ] | |
|
||||
* [ N - 1 ] |---------------------------------|
|
||||
*/
|
||||
usart_process_data(&usart_rx_dma_buffer[old_pos], ARRAY_LEN(usart_rx_dma_buffer) - old_pos);
|
||||
if (pos > 0) {
|
||||
usart_process_data(&usart_rx_dma_buffer[0], pos);
|
||||
}
|
||||
}
|
||||
old_pos = pos; /* Save current position as old for next transfers */
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Check if DMA is active and if not try to send data
|
||||
*
|
||||
* This function can be called either by application to start data transfer
|
||||
* or from DMA TX interrupt after previous transfer just finished
|
||||
*
|
||||
* \return `1` if transfer just started, `0` if on-going or no data to transmit
|
||||
*/
|
||||
uint8_t
|
||||
usart_start_tx_dma_transfer(void) {
|
||||
uint32_t primask;
|
||||
uint8_t started = 0;
|
||||
|
||||
/*
|
||||
* First check if transfer is currently in-active,
|
||||
* by examining the value of usart_tx_dma_current_len variable.
|
||||
*
|
||||
* This variable is set before DMA transfer is started and cleared in DMA TX complete interrupt.
|
||||
*
|
||||
* It is not necessary to disable the interrupts before checking the variable:
|
||||
*
|
||||
* When usart_tx_dma_current_len == 0
|
||||
* - This function is called by either application or TX DMA interrupt
|
||||
* - When called from interrupt, it was just reset before the call,
|
||||
* indicating transfer just completed and ready for more
|
||||
* - When called from an application, transfer was previously already in-active
|
||||
* and immediate call from interrupt cannot happen at this moment
|
||||
*
|
||||
* When usart_tx_dma_current_len != 0
|
||||
* - This function is called only by an application.
|
||||
* - It will never be called from interrupt with usart_tx_dma_current_len != 0 condition
|
||||
*
|
||||
* Disabling interrupts before checking for next transfer is advised
|
||||
* only if multiple operating system threads can access to this function w/o
|
||||
* exclusive access protection (mutex) configured,
|
||||
* or if application calls this function from multiple interrupts.
|
||||
*
|
||||
* This example assumes worst use case scenario,
|
||||
* hence interrupts are disabled prior every check
|
||||
*/
|
||||
primask = __get_PRIMASK();
|
||||
__disable_irq();
|
||||
if (usart_tx_dma_current_len == 0
|
||||
&& (usart_tx_dma_current_len = lwrb_get_linear_block_read_length(&usart_tx_rb)) > 0) {
|
||||
/* Disable channel if enabled */
|
||||
LL_DMA_DisableStream(DMA1, LL_DMA_STREAM_1);
|
||||
|
||||
/* Clear all flags */
|
||||
LL_DMA_ClearFlag_TC1(DMA1);
|
||||
LL_DMA_ClearFlag_HT1(DMA1);
|
||||
LL_DMA_ClearFlag_TE1(DMA1);
|
||||
LL_DMA_ClearFlag_DME1(DMA1);
|
||||
LL_DMA_ClearFlag_FE1(DMA1);
|
||||
|
||||
/* Prepare DMA data and length */
|
||||
LL_DMA_SetDataLength(DMA1, LL_DMA_STREAM_1, usart_tx_dma_current_len);
|
||||
LL_DMA_SetMemoryAddress(DMA1, LL_DMA_STREAM_1, (uint32_t)lwrb_get_linear_block_read_address(&usart_tx_rb));
|
||||
|
||||
/* Start transfer */
|
||||
LL_DMA_EnableStream(DMA1, LL_DMA_STREAM_1);
|
||||
started = 1;
|
||||
}
|
||||
__set_PRIMASK(primask);
|
||||
return started;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Process received data over UART
|
||||
* Data are written to RX ringbuffer for application processing at latter stage
|
||||
* \param[in] data: Data to process
|
||||
* \param[in] len: Length in units of bytes
|
||||
*/
|
||||
void
|
||||
usart_process_data(const void* data, size_t len) {
|
||||
lwrb_write(&usart_rx_rb, data, len); /* Write data to receive buffer */
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Send string over USART
|
||||
* \param[in] str: String to send
|
||||
*/
|
||||
void
|
||||
usart_send_string(const char* str) {
|
||||
lwrb_write(&usart_tx_rb, str, strlen(str)); /* Write data to transmit buffer */
|
||||
usart_start_tx_dma_transfer();
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief USART3 Initialization Function
|
||||
*/
|
||||
void
|
||||
usart_init(void) {
|
||||
LL_USART_InitTypeDef USART_InitStruct = {0};
|
||||
|
||||
// CUBE_MX does this already
|
||||
//LL_GPIO_InitTypeDef GPIO_InitStruct = {0};
|
||||
|
||||
/* Peripheral clock enable */
|
||||
//LL_APB1_GRP1_EnableClock(LL_APB1_GRP1_PERIPH_USART3);
|
||||
//LL_AHB4_GRP1_EnableClock(LL_AHB4_GRP1_PERIPH_GPIOD);
|
||||
//LL_AHB1_GRP1_EnableClock(LL_AHB1_GRP1_PERIPH_DMA1);
|
||||
|
||||
/*
|
||||
* USART3 GPIO Configuration
|
||||
*
|
||||
* PD8 ------> USART3_TX
|
||||
* PD9 ------> USART3_RX
|
||||
*/
|
||||
//GPIO_InitStruct.Pin = LL_GPIO_PIN_8 | LL_GPIO_PIN_9;
|
||||
//GPIO_InitStruct.Mode = LL_GPIO_MODE_ALTERNATE;
|
||||
//GPIO_InitStruct.Speed = LL_GPIO_SPEED_FREQ_HIGH;
|
||||
//GPIO_InitStruct.OutputType = LL_GPIO_OUTPUT_PUSHPULL;
|
||||
//GPIO_InitStruct.Pull = LL_GPIO_PULL_NO;
|
||||
//GPIO_InitStruct.Alternate = LL_GPIO_AF_7;
|
||||
//LL_GPIO_Init(GPIOD, &GPIO_InitStruct);
|
||||
|
||||
/* USART3_RX Init */
|
||||
// CUBE_MX does this already
|
||||
//LL_DMA_SetPeriphRequest(DMA1, LL_DMA_STREAM_0, LL_DMAMUX1_REQ_USART3_RX);
|
||||
//LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_STREAM_0, LL_DMA_DIRECTION_PERIPH_TO_MEMORY);
|
||||
//LL_DMA_SetStreamPriorityLevel(DMA1, LL_DMA_STREAM_0, LL_DMA_PRIORITY_LOW);
|
||||
//LL_DMA_SetMode(DMA1, LL_DMA_STREAM_0, LL_DMA_MODE_CIRCULAR);
|
||||
//LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_STREAM_0, LL_DMA_PERIPH_NOINCREMENT);
|
||||
//LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_STREAM_0, LL_DMA_MEMORY_INCREMENT);
|
||||
//LL_DMA_SetPeriphSize(DMA1, LL_DMA_STREAM_0, LL_DMA_PDATAALIGN_BYTE);
|
||||
//LL_DMA_SetMemorySize(DMA1, LL_DMA_STREAM_0, LL_DMA_MDATAALIGN_BYTE);
|
||||
//LL_DMA_DisableFifoMode(DMA1, LL_DMA_STREAM_0);
|
||||
|
||||
LL_DMA_SetPeriphAddress(DMA1, LL_DMA_STREAM_0, LL_USART_DMA_GetRegAddr(USART3, LL_USART_DMA_REG_DATA_RECEIVE));
|
||||
LL_DMA_SetMemoryAddress(DMA1, LL_DMA_STREAM_0, (uint32_t)usart_rx_dma_buffer);
|
||||
LL_DMA_SetDataLength(DMA1, LL_DMA_STREAM_0, ARRAY_LEN(usart_rx_dma_buffer));
|
||||
|
||||
/* USART3_TX Init */
|
||||
// CUBE_MX does this already
|
||||
//LL_DMA_SetPeriphRequest(DMA1, LL_DMA_STREAM_1, LL_DMAMUX1_REQ_USART3_TX);
|
||||
//LL_DMA_SetDataTransferDirection(DMA1, LL_DMA_STREAM_1, LL_DMA_DIRECTION_MEMORY_TO_PERIPH);
|
||||
//LL_DMA_SetStreamPriorityLevel(DMA1, LL_DMA_STREAM_1, LL_DMA_PRIORITY_LOW);
|
||||
//LL_DMA_SetMode(DMA1, LL_DMA_STREAM_1, LL_DMA_MODE_NORMAL);
|
||||
//LL_DMA_SetPeriphIncMode(DMA1, LL_DMA_STREAM_1, LL_DMA_PERIPH_NOINCREMENT);
|
||||
//LL_DMA_SetMemoryIncMode(DMA1, LL_DMA_STREAM_1, LL_DMA_MEMORY_INCREMENT);
|
||||
//LL_DMA_SetPeriphSize(DMA1, LL_DMA_STREAM_1, LL_DMA_PDATAALIGN_BYTE);
|
||||
//LL_DMA_SetMemorySize(DMA1, LL_DMA_STREAM_1, LL_DMA_MDATAALIGN_BYTE);
|
||||
//LL_DMA_DisableFifoMode(DMA1, LL_DMA_STREAM_1);
|
||||
LL_DMA_SetPeriphAddress(DMA1, LL_DMA_STREAM_1, LL_USART_DMA_GetRegAddr(USART3, LL_USART_DMA_REG_DATA_TRANSMIT));
|
||||
|
||||
/* Enable DMA RX HT & TC interrupts */
|
||||
LL_DMA_EnableIT_HT(DMA1, LL_DMA_STREAM_0);
|
||||
LL_DMA_EnableIT_TC(DMA1, LL_DMA_STREAM_0);
|
||||
/* Enable DMA TX TC interrupts */
|
||||
LL_DMA_EnableIT_TC(DMA1, LL_DMA_STREAM_1);
|
||||
|
||||
/* DMA interrupt init */
|
||||
// CUBE_MX does this already dma.c
|
||||
//NVIC_SetPriority(DMA1_Stream0_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 0, 0));
|
||||
//NVIC_EnableIRQ(DMA1_Stream0_IRQn);
|
||||
//NVIC_SetPriority(DMA1_Stream1_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 0, 0));
|
||||
//NVIC_EnableIRQ(DMA1_Stream1_IRQn);
|
||||
|
||||
/* Configure USART3 */
|
||||
// CUBE_MX does this already usart.c
|
||||
//USART_InitStruct.PrescalerValue = LL_USART_PRESCALER_DIV1;
|
||||
//USART_InitStruct.BaudRate = 115200;
|
||||
//USART_InitStruct.DataWidth = LL_USART_DATAWIDTH_8B;
|
||||
//USART_InitStruct.StopBits = LL_USART_STOPBITS_1;
|
||||
//USART_InitStruct.Parity = LL_USART_PARITY_NONE;
|
||||
//USART_InitStruct.TransferDirection = LL_USART_DIRECTION_TX_RX;
|
||||
//USART_InitStruct.HardwareFlowControl = LL_USART_HWCONTROL_NONE;
|
||||
//USART_InitStruct.OverSampling = LL_USART_OVERSAMPLING_16;
|
||||
//LL_USART_Init(USART3, &USART_InitStruct);
|
||||
//LL_USART_SetTXFIFOThreshold(USART3, LL_USART_FIFOTHRESHOLD_7_8);
|
||||
//LL_USART_SetRXFIFOThreshold(USART3, LL_USART_FIFOTHRESHOLD_7_8);
|
||||
//LL_USART_EnableFIFO(USART3);
|
||||
//LL_USART_ConfigAsyncMode(USART3);
|
||||
|
||||
LL_USART_EnableDMAReq_RX(USART3);
|
||||
LL_USART_EnableDMAReq_TX(USART3);
|
||||
LL_USART_EnableIT_IDLE(USART3);
|
||||
|
||||
/* USART interrupt, same priority as DMA channel */
|
||||
// CUBE_MX does this already usart.c
|
||||
//NVIC_SetPriority(USART3_IRQn, NVIC_EncodePriority(NVIC_GetPriorityGrouping(), 0, 0));
|
||||
//NVIC_EnableIRQ(USART3_IRQn);
|
||||
|
||||
/* Enable USART and DMA RX */
|
||||
LL_DMA_EnableStream(DMA1, LL_DMA_STREAM_0);
|
||||
|
||||
//LL_USART_Enable(USART3);
|
||||
|
||||
/* Polling USART3 initialization */
|
||||
while (!LL_USART_IsActiveFlag_TEACK(USART3) || !LL_USART_IsActiveFlag_REACK(USART3)) {}
|
||||
}
|
||||
|
||||
/* Interrupt handlers here */
|
||||
|
||||
/**
|
||||
* \brief DMA1 stream1 interrupt handler for USART3 RX
|
||||
*/
|
||||
void
|
||||
DMA1_Stream0_IRQHandler(void) {
|
||||
/* Check half-transfer complete interrupt */
|
||||
if (LL_DMA_IsEnabledIT_HT(DMA1, LL_DMA_STREAM_0) && LL_DMA_IsActiveFlag_HT0(DMA1)) {
|
||||
LL_DMA_ClearFlag_HT0(DMA1); /* Clear half-transfer complete flag */
|
||||
usart_rx_check(); /* Check for data to process */
|
||||
}
|
||||
|
||||
/* Check transfer-complete interrupt */
|
||||
if (LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_STREAM_0) && LL_DMA_IsActiveFlag_TC0(DMA1)) {
|
||||
LL_DMA_ClearFlag_TC0(DMA1); /* Clear transfer complete flag */
|
||||
usart_rx_check(); /* Check for data to process */
|
||||
}
|
||||
|
||||
/* Implement other events when needed */
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief DMA1 stream1 interrupt handler for USART3 TX
|
||||
*/
|
||||
void
|
||||
DMA1_Stream1_IRQHandler(void) {
|
||||
/* Check transfer complete */
|
||||
if (LL_DMA_IsEnabledIT_TC(DMA1, LL_DMA_STREAM_1) && LL_DMA_IsActiveFlag_TC1(DMA1)) {
|
||||
LL_DMA_ClearFlag_TC1(DMA1); /* Clear transfer complete flag */
|
||||
lwrb_skip(&usart_tx_rb, usart_tx_dma_current_len);/* Skip sent data, mark as read */
|
||||
usart_tx_dma_current_len = 0; /* Clear length variable */
|
||||
usart_start_tx_dma_transfer(); /* Start sending more data */
|
||||
}
|
||||
|
||||
/* Implement other events when needed */
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief USART3 global interrupt handler
|
||||
*/
|
||||
void
|
||||
USART3_IRQHandler(void) {
|
||||
/* Check for IDLE line interrupt */
|
||||
if (LL_USART_IsEnabledIT_IDLE(USART3) && LL_USART_IsActiveFlag_IDLE(USART3)) {
|
||||
LL_USART_ClearFlag_IDLE(USART3); /* Clear IDLE line flag */
|
||||
usart_rx_check(); /* Check for data to process */
|
||||
}
|
||||
|
||||
/* Implement other events when needed */
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief System Clock Configuration
|
||||
*/
|
||||
void
|
||||
SystemClock_Config(void) {
|
||||
/* Configure flash latency */
|
||||
LL_FLASH_SetLatency(LL_FLASH_LATENCY_4);
|
||||
if (LL_FLASH_GetLatency() != LL_FLASH_LATENCY_4) {
|
||||
while (1) {}
|
||||
}
|
||||
|
||||
/* Configure power supply and voltage scale */
|
||||
LL_PWR_ConfigSupply(LL_PWR_LDO_SUPPLY);
|
||||
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE0);
|
||||
|
||||
/* Uncomment if used on STM32H745/H755 Nucleo */
|
||||
/* Dual-Core Nucleo board used external SMPS instead of LDO */
|
||||
/* Manually enable it */
|
||||
//PWR->CR3 |= 1 << 2;
|
||||
|
||||
/* Configure HSE */
|
||||
LL_RCC_HSE_EnableBypass();
|
||||
LL_RCC_HSE_Enable();
|
||||
while (!LL_RCC_HSE_IsReady()) {}
|
||||
|
||||
/* Configure PLL */
|
||||
LL_RCC_PLL_SetSource(LL_RCC_PLLSOURCE_HSE);
|
||||
LL_RCC_PLL1P_Enable();
|
||||
LL_RCC_PLL1Q_Enable();
|
||||
LL_RCC_PLL1_SetVCOInputRange(LL_RCC_PLLINPUTRANGE_8_16);
|
||||
LL_RCC_PLL1_SetVCOOutputRange(LL_RCC_PLLVCORANGE_WIDE);
|
||||
LL_RCC_PLL1_SetM(1);
|
||||
LL_RCC_PLL1_SetN(120);
|
||||
LL_RCC_PLL1_SetP(2);
|
||||
LL_RCC_PLL1_SetQ(20);
|
||||
LL_RCC_PLL1_SetR(2);
|
||||
LL_RCC_PLL1_Enable();
|
||||
while (!LL_RCC_PLL1_IsReady()) {}
|
||||
|
||||
/* Intermediate AHB prescaler 2 when target frequency clock is higher than 80 MHz */
|
||||
LL_RCC_SetAHBPrescaler(LL_RCC_AHB_DIV_2);
|
||||
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
|
||||
LL_RCC_SetSysPrescaler(LL_RCC_SYSCLK_DIV_1);
|
||||
LL_RCC_SetAHBPrescaler(LL_RCC_AHB_DIV_2);
|
||||
LL_RCC_SetAPB1Prescaler(LL_RCC_APB1_DIV_2);
|
||||
LL_RCC_SetAPB2Prescaler(LL_RCC_APB2_DIV_2);
|
||||
LL_RCC_SetAPB3Prescaler(LL_RCC_APB3_DIV_2);
|
||||
LL_RCC_SetAPB4Prescaler(LL_RCC_APB4_DIV_2);
|
||||
|
||||
/* Configure systick */
|
||||
LL_Init1msTick(480000000);
|
||||
LL_SYSTICK_SetClkSource(LL_SYSTICK_CLKSOURCE_HCLK);
|
||||
LL_SetSystemCoreClock(480000000);
|
||||
LL_RCC_SetUSARTClockSource(LL_RCC_USART234578_CLKSOURCE_PCLK1);
|
||||
}
|
||||
Reference in New Issue
Block a user